重生之我是密码手。
家人们!谁懂啊,RSA签到都不会
from Crypto.Util.number import *
from secret import flag
m = bytes_to_long(flag)
p = getPrime(512)
q = getPrime(512)
e = 65537
n = p*q
c = pow(m,e,n)
print(f'p = {p}')
print(f'q = {q}')
print(f'c = {c}')
'''
p = 12567387145159119014524309071236701639759988903138784984758783651292440613056150667165602473478042486784826835732833001151645545259394365039352263846276073
q = 12716692565364681652614824033831497167911028027478195947187437474380470205859949692107216740030921664273595734808349540612759651241456765149114895216695451
c = 108691165922055382844520116328228845767222921196922506468663428855093343772017986225285637996980678749662049989519029385165514816621011058462841314243727826941569954125384522233795629521155389745713798246071907492365062512521474965012924607857440577856404307124237116387085337087671914959900909379028727767057
'''
很明显就是最基础的rsa
import gmpy2
p = 12567387145159119014524309071236701639759988903138784984758783651292440613056150667165602473478042486784826835732833001151645545259394365039352263846276073
q = 12716692565364681652614824033831497167911028027478195947187437474380470205859949692107216740030921664273595734808349540612759651241456765149114895216695451
n = p*q
e=65537
print(n)
#159815598674904640027098331162347988922194433731964450257065506925289826150266802038662002544129457139047934452929223408615917720106891707480466247184676672373769176533991030505629330283054451556177512592574735088228984703255202745127991386941533156933557260334687275503248793438858493994669328447123309243923
phi_n=(p-1)*(q-1)
d= gmpy2.invert(e,phi_n)
print(d)
#36112565432910612541942706962223039930860084671813808136730138579071624204026749338397326634969759536935789879204554213012391862872315780339018030342522185433437772588688970979667097963086458493604270236302678345514661708353601478921375772129292333594441864048042124579326951080450744716155318735421067840273
然后一个一个代入西二风的工具里,Euler就是phi_n
或者可以完全写脚本做:
import gmpy2
from Crypto.Util.number import long_to_bytes
e=65537
p = 12567387145159119014524309071236701639759988903138784984758783651292440613056150667165602473478042486784826835732833001151645545259394365039352263846276073
q = 12716692565364681652614824033831497167911028027478195947187437474380470205859949692107216740030921664273595734808349540612759651241456765149114895216695451
c = 108691165922055382844520116328228845767222921196922506468663428855093343772017986225285637996980678749662049989519029385165514816621011058462841314243727826941569954125384522233795629521155389745713798246071907492365062512521474965012924607857440577856404307124237116387085337087671914959900909379028727767057
n=p*q
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m = pow(c,d,n)
print(long_to_bytes(m))
factordb (中级)
e = 65537
n = 87924348264132406875276140514499937145050893665602592992418171647042491658461
c = 87677652386897749300638591365341016390128692783949277305987828177045932576708
算一下d
import gmpy2
p=275127860351348928173285174381581152299
q=319576316814478949870590164193048041239
n = p*q
e=65537
phi_n=(p-1)*(q-1)
d= gmpy2.invert(e,phi_n)
print(d)
#10866948760844599168252082612378495977388271279679231539839049698621994994673
yafu (中级)
from Crypto.Util.number import *
from secret import flag
m = bytes_to_long(flag)
n = 1
for i in range(15):
n *=getPrime(32)
e = 65537
c = pow(m,e,n)
print(f'n = {n}')
print(f'c = {c}')
'''
n = 15241208217768849887180010139590210767831431018204645415681695749294131435566140166245881287131522331092026252879324931622292179726764214435307
c = 12608550100856399369399391849907846147170257754920996952259023159548789970041433744454761458030776176806265496305629236559551086998780836655717
'''
import gmpy2
e = 65537
p1=2151018733
p2=2201440207
p3=2315495107
p4=2585574697
p5=2719600579
p6=2758708999
p7=2767137487
p8=2906576131
p9=2923522073
p10=3354884521
p11=3355651511
p12=3989697563
p13=4021078331
p14=4044505687
p15=4171911923
phi = (p1 - 1) * (p2 - 1) * (p3 - 1) * (p4 - 1) * (p5 - 1) * (p6 - 1) * (p7 - 1) * (p8 - 1) * (p9 - 1) * (p10 - 1) * (p11 - 1) * (p12 - 1) * (p13 - 1) * (p14 - 1) * (p15 - 1)
d = gmpy2.invert(e, phi)
print(d)
#3936755899646600686215566512896866674683133415527864719997715318148147385203287657188495205983652573089554541753973835730576494171914667753473
e的学问
from Crypto.Util.number import *
m=bytes_to_long(b'xxxxxx')
p=getPrime(256)
q=getPrime(256)
e=74
n=p*q
c=pow(m,e,n)
print("p=",p)
print("q=",q)
print("c=",c)
#p= 86053582917386343422567174764040471033234388106968488834872953625339458483149
#q= 72031998384560188060716696553519973198388628004850270102102972862328770104493
#c= 3939634105073614197573473825268995321781553470182462454724181094897309933627076266632153551522332244941496491385911139566998817961371516587764621395810123
这里很明显,e和phi都是偶数,不互素,直接套板子
import gmpy2
from Crypto.Util.number import *
# 当e约去公约数后与phi互素
def decrypt(p, q, e, c):
n = p * q
phi = (p - 1) * (q - 1)
t = gmpy2.gcd(e, phi)
d = gmpy2.invert(e // t, phi)
m = pow(c, d, n)
print(m)
msg = gmpy2.iroot(m, t)
print(msg)
if msg[1]:
print(long_to_bytes(msg[0]))
p= 86053582917386343422567174764040471033234388106968488834872953625339458483149
q= 72031998384560188060716696553519973198388628004850270102102972862328770104493
c= 3939634105073614197573473825268995321781553470182462454724181094897309933627076266632153551522332244941496491385911139566998817961371516587764621395810123
e=74
decrypt(p, q, e, c)
#LitCTF{e_1s_n0t_@_Prime}
或者直接用内置的功能
The same common divisor (高级)
from Crypto.Util.number import *
m=bytes_to_long(b'xxxxxx')
e=65537
p=getPrime(1024)
q1=getPrime(1024)
q2=getPrime(1024)
n1=p*q1
n2=p*q2
c1=pow(m,e,n1)
c2=pow(m,e,n2)
n3=n1^n2
print('n1=',n1)
print('n3=',n3)
print('c1=',c1)
print('c2=',c2)
#n1= 9852079772293301283705208653824307027320071498525390578148444258198605733768947108049676831872672654449631852459503049139275329796717506126689710613873813880735666507857022786447784753088176997374711523987152412069255685005264853118880922539048290400078105858759506186417678959028622484823376958194324034590514104266608644398160457382895380141070373685334979803658172378382884352616985632157233900719194944197689860219335238499593658894630966428723660931647038577670614850305719449893199713589368780231046895222526070730152875112477675102652862254926169713030701937231206405968412044029177246460558028793385980934233
#n3= 4940268030889181135441311597961813780480775970170156650560367030148383674257975796516865571557828263935532335958510269356443566533284856608454193676600884849913964971291145182724888816164723930966472329604608512023988191536173112847915884014445539739070437180314205284883149421228744714989392788108329929896637182055266508625177260492776962915873036873839946591259443753924970795669864031580632650140641456386202636466624658715315856453572441182758855085077441336516178544978457053552156714181607801760605521338788424464551796638531143900048375037218585999440622490119344971822707261432953755569507740550277088437182
#c1= 7066425618980522033304943700150361912772559890076173881522840300333719222157667104461410726444725540513601550570478331917063911791020088865705346188662290524599499769112250751103647749860198318955619903728724860941709527724500004142950768744200491448875522031555564384426372047270359602780292587644737898593450148108629904854675417943165292922990980758572264063039172969633878015560735737699147707712154627358077477591293746136250207139049702201052305840453700782016480965369600667516646007546442708862429431724013679189842300429421340122052682391471347471758814138218632022564279296594279507382548264409296929401260
#c2= 854668035897095127498890630660344701894030345838998465420605524714323454298819946231147930930739944351187708040037822108105697983018529921300277486094149269105712677374751164879455815185393395371001495146490416978221501351569800028842842393448555836910486037183218754013655794027528039329299851644787006463456162952383099752894635657833907958930587328480492546831654755627949756658554724024525108575961076341962292900510328611128404001877137799465932130220386963518903892403159969133882215092783063943679288192557384595152566356483424061922742307738886179947575613661171671781544283180451958232826666741028590085269
import gmpy2
from Crypto.Util.number import long_to_bytes
e=65537
c1= 7066425618980522033304943700150361912772559890076173881522840300333719222157667104461410726444725540513601550570478331917063911791020088865705346188662290524599499769112250751103647749860198318955619903728724860941709527724500004142950768744200491448875522031555564384426372047270359602780292587644737898593450148108629904854675417943165292922990980758572264063039172969633878015560735737699147707712154627358077477591293746136250207139049702201052305840453700782016480965369600667516646007546442708862429431724013679189842300429421340122052682391471347471758814138218632022564279296594279507382548264409296929401260
n3= 4940268030889181135441311597961813780480775970170156650560367030148383674257975796516865571557828263935532335958510269356443566533284856608454193676600884849913964971291145182724888816164723930966472329604608512023988191536173112847915884014445539739070437180314205284883149421228744714989392788108329929896637182055266508625177260492776962915873036873839946591259443753924970795669864031580632650140641456386202636466624658715315856453572441182758855085077441336516178544978457053552156714181607801760605521338788424464551796638531143900048375037218585999440622490119344971822707261432953755569507740550277088437182
n1= 9852079772293301283705208653824307027320071498525390578148444258198605733768947108049676831872672654449631852459503049139275329796717506126689710613873813880735666507857022786447784753088176997374711523987152412069255685005264853118880922539048290400078105858759506186417678959028622484823376958194324034590514104266608644398160457382895380141070373685334979803658172378382884352616985632157233900719194944197689860219335238499593658894630966428723660931647038577670614850305719449893199713589368780231046895222526070730152875112477675102652862254926169713030701937231206405968412044029177246460558028793385980934233
n2 = n3 ^ n1
p=gmpy2.gcd(n1,n2)
q=n1//p
c=c1
n=p*q
phi_n=(p-1)*(q-1)
#求逆元
d=gmpy2.invert(e, phi_n)
m=pow(c, d, n)
print(long_to_bytes(m))